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Summary

A spectral numerical method is used to study the two-dimensional
unsteady flow over a flat plate in the presence of a plane sound wave
propagating parallel to the flow., For s =wx/U__ > 0(1), no obser-
vable interaction or energy interchange between the sound wave and
the Tollmien-Schlichting wave is present, In the region s £0(1),
near the leading edge, an interaction occurs; the magnitude of this
interaction is computed, A plane sound wave with dimensionless fre-
quency UV/UED =56 x 10-6 generates a Tollmien-Schlichting wave of
the same frequency and an amplitude at the first neutral point 10-4
times the sound-wave amplitude. Computations at a second, lower
frequency result in 2 lower neutral point amplitude. The response of
the boundary layer to large unsteady disturbances is discussed and
compared with published behavior based on the boundary layer equa-
tions. Solutions of the Orr-Sommerfeld equation are examined and
found to have a different character for s § 0(l) consistent with the
more complete equations.

| Introduction g

The present work numerically investigates the flow over a flat plate
in the presence of a plane sound wave propagating parallel to the free-
stream flow., It is postulated that the sound wave generates Tollmien-
Schlichting waves which, in turn, may lead to transition. Although
the investigation considers only small amplitude sound waves, the
numerical methods used are not restricted to this case.

An experimental study of the generation of Tollmien-Schlichting waves
by sound waves has been made by Shapiro [1]. His data indicate that
a Tollmien-Schlichting wave is generated with the same frequency as,
and with a much smaller wave length than, the sound wave., Thomas
and Lekoudis [2] compare Shapiro's data with a simple model in which
the flow field is a sum of a Tollmien-Schlichting wave and a sound
wave, This model is in fair agreement with Shapiro [1]; thus, they
conclude that there is no interaction between the waves in the range of
the data, and that the interaction which produced the Tollmien-
Schlichting wave occurs near the leading edge.

The work on unsteady boundary-layer theory is relevant to the present
work, even though the boundary-layer equations cannot predict the
presence of Tollmien-Schlichting waves, Early work on unsteady
boundary-layer theory was done by Moore [3] and Ostrach [4].
Illingworth [5] has addressed the problem of the interaction of a weak




sound wave with a compressible, heat-conducting boundary layer.
He generates two series solutions for the perturbation to the
Blasius flow, One expansion is valid for small dimensionless fre-
quency, s =wx/U__, and the other for large s, Lam and Rott [6]
consider a genera‘Pincompressible boundary layer with a small
unsteady disturbance at the edge. They give special attention to the
Joining of the small s and large s solutions. Ackerberg and
Phillips [7] consider incompressible flat-plate flow with small fluc-
tuations in the free-stream velocity. Both investigations conclude
that the downstream (large s) solution is approached asymptotically
through damped eigenfunctions. Ackerberg and Phillips present
numerical results to support this conclusion.

II. Physical and Mathematical Problem Description

The problem af interest is the interaction of a plane sound wave
with a Blasius boundary layer in incompressible flow, Thus, the
sound speed and wave length approach infinity and the wave number
goes to zero, Following Illingworth [5], the dimensionless free-
stream velocity is given by

u =1+ € coswt (1)

where € is typically ) in the results reported herein; w and t are,
respectively, the (temporal) frequency of the sound wave and time.

Going to the incompressible limit allows a previously developed com-
puter code [8] to be applied with modifications only to the boundary
conditions. Since a detailed description of the formulation, the
assumptions, and the numerics has been reported, only a brief sum-
mary will be given here,

The equations are solved in dimensionless parabolic coordinates,
§ and n, which are related to the dimensional Cartesian coordinates,
x and y, as follows:

2
x +iy = x, [5 +in (2RXI>'”Z] (2)

where x| is a typical distance from the leading edge, and Ry, is the
Reynolds number based on the mean freestream velocity and X1.
The time is made dimensionless with the mean freestream velocity
and with x)

= tUm/xl. (3)

The dimensionless stream function and vorticity are defined in terms
of the dimensional quantities ¥ and ¢.

2
o (zwm"l)l/z §f = (szmxl)l/“g (4)

T

- 1 T D 1/‘) &
= “m“’m/‘“”“\” Q/¢ (5)

where v is the kinematic viscosity. The dependent variable f is the
usual Blasius stream function,
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The equations solved are the parabolized vorticity equations [8].

26Q, =Q /¢ + geQn/e - gﬂ(.Q/é)€ + lg“n/<262Rxl)] (6)
§¢

= . 7
§Q =g ¢ By /<ZR"1) (7)
The equation set is solved in the space
1<E < (R /R )”2 (8)
-
0<n <o (9)
0<T (10)

The equations are first order in time and are integrated from a
Blasius initial condition atT™ = 0

goEghs €fBlasius e
The four boundary conditions in the n-dimension are

g =g, = 0; =0 (12)

g. /6 =1 =1 +e€coswt
i b n »o (13)
g/t = f=mn-B +€M-Y) coswt

where B is a constant characteristic of the displacement thickness
and ¥ is either B8/2 or zero in order to be consistent with the bound-
ary conditions at Rxl, discussed subsequently.

Posing the problem on a finite Reynolds number range [re Eq. (8)]
has the advantage that the difficult to treat vortical singularity at
the leading edge of the plate is avoided. On the other hand, it intro-
duces a requirement for boundary conditions to be imposed at Ry .
The boundary conditions are obtained from the unsteady boundary-
layer solutions [5-7]. The small s = wx/U, solution for the x-com-
ponent of the velocity is

u = fp + ecoswt [fp +nfy/2 + O(s)] (14)

where fg is the Blasius solution. The solution for large s is

u = 1 + e[coswt - exp(-ky)cos (Wt - ky) + ois %]  qs)

where

k = (w/2p)1/2 (16)

The mixture of independent variables in Eq. (15) is used to empha-
size the physics of that equation. Equation (14) shows that near the
leading edge the unsteady velocity profile is in phase with the free
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stream, and the thickness grows at the same rate as the Blasius
boundary-layer thickness. For s >1, Eq. (15) shows that the un-
steady shear layer no longer grows with x, and that there is a phase
shift across the Stokes-type layer, For large s, in the words of
Ackerberg and Phillips [7], there is a "double boundary layer" with
the Stokes layer being thinner than, and embedded in, the Blasius
boundary layer,

The upstream boundary conditions obtained from Eqs. (14) and (15)

are

8= ge = 1y +€Coswt(t’B + fB)/Z (AT
Equations (17) follow from Eq. (14); the conditions obtained from
Eq. (15) are

g * fg ‘6[7‘\*osut + {exp[-}\’n][cos(wt - Kn) + sin(wt - Kn)l

- cosWt - sinwt ,/ZK]

£, = fB + énfcoswt - exp(-Kn)cos (wt - Kn)] (18)

S

where K is a dimensionless k

. if2
K <k il b 19
‘1< xl/ ) (

The parabolized system of equations is third order in ¢ and requires
a downstream boundary condition. The present numerical results
confirm previous experience [8] in which the condition

g A (20)
§8¢

produced a small disturbance at the downstream boundary,

The equations are solved using a spectral method in space; a Cheby-

shev polynomial expansion is used in each dimension. The solution !
1s updated in time with an explicit finite difference method.

III., Continuous Wave-Wave Interaction

Two possible mechanisms for feeding energy into a Tollmien-
Schlichting wave from a sound wave are investigated herein, One
possibility is the existence of a continuous flow of energy into the
Tollmien-Schlichting wave along the whole boundary layer, The
other possibility is that the sound wave interacts with the boundary
layer only in localized regions, and then the Tollmien-Schlichting
wave propagates independently of the sound wave, In this section,
the former possibility is investigated.

The study of the wave-wave interaction is complicated by the fact
that the computer code generates solutions for a finite region on the
plate. Thus, any solution obtained is dependent upon the assumed
upstream boundary conditions. Furthermore, unless the upstream
boundary conditions are specifically chosen to be orthogonal to the
primary eigensolution of the Orr-Sommerfeld equation, a finite
Tollmien-Schlichting wave will be generated by the conditions, In




this section, the objective is to investigate the possibility of a con-
tinuous interaction. This continuous interaction, if it exists, will
be most easily found if the Tollmien-Schlichting wave generated by
the upstream boundary condition is minimized, As will be shown
subsequently, Eqs. (18) generate a very small Tollmien-Schlichting
wave, The effect of the boundary condition on the solution is also
clarified by moving the position of the boundary and by running com-
putations in the Reynolds number range in which the boundary-
generated wave decays.

Before the solutions are examined, some trigonometric identities
will be presented to aid in their interpretation. If at some station in
the boundary layer the sound wave generates a time periodic dis-
turbance of amplitude A and the Tollmien-Schlichting wave generates
a disturbance of amplitude B and real wave number a, then the total
disturbance (at frequency W) is

u = A coswt + B cos(lax - wt) (21)

where A and B may be functions of y and slowly varying functions of
x, and the origin of x is assumed to be such that the phase angle is
zero., The Fourier amplitude of the disturbance at frequency w is

2 2 1/2
C = (A" +B" + 2ZABcoasox) (22)

When A >» B, Eq. (22) may be expanded to give
2
C = A +Bcosax + O(B™). (23)

Equation (21) assumes that A and B are independent or weakly depen-
dent parameters. Equation (23) shows that, in this case, the Fourier
amplitude of the total disturbance will oscillate spatially with a wave
length equal to the Tollmien-Schlichting wave length, that the magni-
tude of the spatial mean is associated with the sound wave, and that
the magnitude of the envelope about the mean is associated with the
Tollmien-Schlichting wave. The experimental data of Shapiro [1] are
consistent with this picture in that he found the Fourier amplitude to
oscillate spatially with the Tollmien-Schlichting wave length,

The first few figures show the results of a numerical calculation in
the range 1.2 x 10°5S Ry < 3,8 x 105, The dimensionless frequency
is that of Shapiro, wU/UCZD = 5,6 x 10-5, The large s boundary layer
equations are used to generate the upstream boundary conditions
[Eqs. (18)] imposed at Ry = 1.2 x 10° or s = 6,72. The numerical
solutions are obtained by running the calculations until the solution is
time periodic; this solution can then be studied by Fourier transform-
ing in time,

In Fig. 1, the Fourier amplitude of u at frequency W is plotted versus
Reynolds number for y = constant (RY = yUOO/U =~ 196), This value of

y corresponds to n= 0.4 at Ry = 1,2'x 105, For the computation
shown, the value of € was 0,001 [re Eq. (1)]. (Numerical evidence
obtained by repeating selected computations with € halved verified
that solutions with this value of € are linear in €.) The solution has
the features of the sum of a Stokes layer solution and a Tollmien-
Schlichting wave solution. The mean curve in Fig. 1 is very nearly

-
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corresponding to the fact that the high Reynolds number
ady boundary-layer solution (Stokes layer) is a function only

The solution oscillates about the mean with a wave length equal
v Tollmien-Schlichting wave length (shown as A in Fig. 1),

ant

ler to confirm the presence of a Tollmien-Schlichting wave, the
itude of the envelope of several curves similar to Fig. 1 was

ned and plotted versus n in Fig., 2 at H\ 2.8 x 10°. The points
tained are compared with a scaled solution to the Orr-Sommerfeld
ion at the same Reynolds number, and the agreement is excellent.
‘e 2 shows that a Tollmien-Schlichting wave is present, and that
nvelope of curves such as Fig, | characterize the magnitude of

ave.

!
ave envelope points are shown for values of n greater than about '
because at the larger values of n the solution curves appear to be
lated with two spatial wave lengths rather than just one, making
xtraction of the required information very difficult, Figure 3
s a plot of such a solution curve at a location twelve times further
the wall than the solution in Fig. 1. The value of y in Fig. 3
*sponds to a value of nof 4,8 at R, = 1,2 x 10° and, for compari
vith Fig. 2, n= 3,14 at !{\ = 2.8 x 10°, The spatial modulation
» Tollmien-Schlichting wave length is still in evidence, but a ,
ilation with a wave length about three times as long is also present, ¥

»ms likely that the longer wavelength modulation indicates the :
‘nce of disturbances described by the continuous spectrum of the k
Sommerfeld equation [ 9], Continuous spectrum solutions are very i
1 in the boundary layer compared to their value further from the

I'his is consistent with the fact that the higher wave length
(lation i1s not seen on Fig, 1. Furthermore, the dimensionless
speed of the continuous spectrum modes is very close to unity,
vared to a Tollmien-Schlichting wave speed, in the present case,
out 0,32, Thus, the factor of three difference in wave speed is
stent with the factor of three difference in modulation wave length

y y
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The main interest here is the generation of Tollmien-Schlichting
waves; thus, most of the remainder of the plots will be at a y-loca-
| tion very near the wall (R, = 196), In all cases, this was sufficient
to suppress the continuous spectrum disturbances which were evi-
L dent further out in the boundary layer. Any other discrete eigenmodes
| present decay very rapidly,

Figure 4 shows the variation of the total Fourier amplitude of u versus

y at the upstream boundary, and in the interior of computation domain.

The upstream boundary condition has been imposed at Ry = 1,2 x 10°,

so the left curve in Fig. 4 is just the Fourier amplitude of Eq. (15). &
This figure demonstrates that the high Reynolds number boundary layer '
solution is an excellent approximation to the solution of the more com-

plete equations. Any deviation of the right-hand curve of Fig, 4 from

the (left-hand) boundary-layer solution because of the presence of the

Tollmien-Schlichting or continuous spectrum waves is imperceptible

on the scale of Fig. 4.

1.008 —————————— o R L2 |
S 1004 s Lot ™
s 5 0.8 5 '
@ | | ¥
3 3 Ry - 2.6 x 10° \
'—éi 1. 000 —+ % 0.6 | | g
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3 w2 - 56x 107 5 02
“ LE .
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¥ 0992 i y's L 00 1 " 1 1 i
: 1.2 2.0 7k 3.6 4.4 0 08 0 08 1.6 2.4 32 4
‘ =5
{. 107 R, yu_r2vx12
f
Fig. 3. Fourier amplitude at Fig. 4. Fourier amplitude of
constant y u versus y

Figures 1 through 4 demonstrate that a Tollmien-Schlichting wave is
present. The main interest of this paper is the source of this wave.
The spatial amplitude variation of the Tollmien-Schlichting wave in
the presence of the sound wave is compared with the variation of a
pure Tollmien-Schlichting wave with no sound wave present. If the
curves have the same behavior, then the Tollmien-Schlichting wave
propagates independently of the sound wave; if the envelope curve
grows relative to the pure wave amplitude, then energy is fed into the
Tollmien-Schlichting wave continuously by the sound wave. The cir-
cles in Fig. 5 are obtained from the extrema of Fig. 1; the curve is

a scaled linear Tollmien-Schlichting wave solution with no sound wave
present, With the exception of the first point, they are in good agree-
ment. At the first point, other decaying eigenmodes are non-negli-
gible. It is concluded that the Tollmien-Schlichting wave in the nu- f
merical computation is generated by the boundary condition at the
upstream boundary and subsequently propagates independently of the
sound wave. As noted previously, Thomas and Lekoudis [2] have
concluded from Shapiro's data that the two waves are independent.




Figure o further demonstrates that the Tollmien Schlichting wave
amplitude in the present computations is controlled by the upstream
boundary conditions, The upstream boundary has been moved from
1.2 x 102 in Fig. 1 to 1,1 x10% in Fig., o; all other parameters are
unchanged, The phase and amplitude are significantly aftected by the
change in location of the upstream boundary, rather than being inde
pendent of the boundary condition as would be the case if interaction
with the freestream sound wave dominated.

0 8 v . .
envelope of Higure | f T U R (1) \J
|
\ R, - 1%
. \\ WU - 50x 10 .08 , )
- 3 Ry - 1% - | |
8: 0 ‘S\ | \
5 N S0 | || : \ |
8 & 5 ‘ = ek g \
v w s [ 1]
8 Rl ™ ¥ | |
2 pure Tollmien Schiichting wave 20 S8 Y
i
10 - . o ; - - ‘ ! (§ 10, )¢ L ORI CORSESN (E—— F————
Li e 240 24 28 i, o 4 08 16 24 i 40
Y iy 5 .\
10 R, 10" R,
Fig, 5, Comparison of envelope Fig. 6. Fourier amphtude of
behavior with a pure Tollmien u at constant vy

Schhichting wave

Fhe main result of this section is that a small amplitude Tollmien
Schlichting wave mav be added to the Stokes solution and that these
waves or solutions do not interact, in the high Reynolds number range
constdered, The Tollien Schlichting waves present in the solutions
discussed were found to be generated artificially by the upstream
boundary condition.

IV, Localhized Wave- Wave Interaction

In the previous section, it was concluded that the interaction between
a sound wave and a Tollmien-Schhichting wave does not occur over the
entire boundary laver but, it it occurs, the interaction ig confined to a
localized region., The purpose of this section is to determine where
enerpgy is fed into the Tollmien -Schhichting wave and to compute the
amplitude of this wave,

Some ot the major results of unsteady boundary layer theory will be
summarized in order to place the numerical results in perspective,

In the boundary layver case, there are two distinet solution regions on
the plate, At low Reynolds number, the unsteady laver grows at the
game rate as the Blasius boundary laver; at high Revnolds number, the
unsteady laver 1s controlled by the frequency and 1s thinner than the
Blasius layer, There is little doubt that the more complete equations
considered herein have solutions with essentially the some behavior as
Fig. 4 has demonstrated. The authors of Refs, 6 and 7 were concerned
with explaining how the parabolic boundary-laver equations could al
ways have the same large Reynolds number solution, independent of




any disturbances which might exist upstream, They conclude that the
downstream solution is approached via damped eigenfunctions; dis-
turbances inconsistent with the downstream solution generate asymp-
totic eigensolutions which decay exponentially, Numerical solutions
to the parabolized vorticity equations will be shown to be similar,
Even with large disturbances (introduced via the upstream boundary
conditions), the solution at large Reynolds number approaches the
expected downstream solution via eigenfunctions, There is one major
difference, however; the asymptotic eigenfunction (not present in the
boundary-layer approximation) associated with the Tollmien-Schlichting
wave i8 not necessarily damped. The following picture will be de-
veloped. Under normal flow conditions (no localized disturbance), the
magnitude of the various eigenfunctions including the Tollmien-
Schlichting wave amplitude in the case of the more complete equations
18 set by the end of the region in which the unsteady boundary layer
changes from a growing to a constant-thickness layer, If disturbances
are introduced at some point downstream of this region, then the
magnitude of the eigenfunctions is set immediately downstream of the
disturbance,

All the numerical results reported in this section use Eq. (17) as the
upstream boundary condition on the computation. Physically, the use
of this boundary condition is only justified for s small compared to
unity, Computations were actually performed in which the upstream
value of 8 was varied from 6,16 to 0,392, Using Eq. (17) at high
Revnolds number is a way of inputting a large disturbance at high Rev-
nolds number. Results {rom these computations will be used to demon-
strate that the solution does relax to the expected high Reynolds num-
ber behavior,

Numerical instabilities were encountered when the first attempts were
made at running computations with small upstream Reynolds number,
It was ultimately found that with 33 Chebyshev modes in the stream-
wise direction, the requirement for numerical stability is

R‘ /R <13,9 (24)

I'his 18 a severe restriction, because the phvsical length of the com
putation varies linearly with the upstream Reynolds number R"l' and
the interest is in small values of Ry . At larger values of Ry ., the
length of the computation is restricted to about eight Tollmien
Schlichting wavelengths with the 33 modes, Because of the restriction,
no computations were made with a value of s at the upstream boundary
smaller than 0, 392,

Consider first a calculation which is identical to Fig, 5, except that
the upstream boundary condition has been changed from Eq. (15) to
Eq. (14), The boundary condition is physically corrvect for small s,
so it is here interpreted as a solution with a large periodic disturbance
input at 8 = 6,16, R, = 1,1 x 10%, A plot of the Fourier amplitude

of u at constant y analogous to Fig, ¢ is shown in Fig, 7. The two
curves are qualitatively very similar; after a finite region at the left-
hand end in which continuous and higher discrete modes decay, both
are modulated with the same Tollmien-Schlichting wavelength and
have the same envelope decay rate and mean value, The major dif
ference is that the Tollmien-Schlichting wave (the envelope) amplitude
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is about a factor of 16 larger in Fig. 7 than in Fig. 6. It is also
interesting to look at the profile of the Fourier amplitude of u versus
y and see how it changes as a function of Reynolds number. Such
curves are shown in Figs. 8 and 9. The curve for Reynolds number
1.1 x 10° in Fig. 8 is the upstream boundary condition or, alterna-
tively, the unsteady disturbance. The characteristic thickness of this
disturbance is much greater than the normal Stokes layer which would
exist at that frequency and Reynolds number. Figures 8 and 9 show
that the boundary layer has adjusted to a solution similar to those
shown in Fig. 4 by Reynolds number 2 x 105, Downstream of

Ry = 2 x 10° the characteristic shape shown in Fig. 4 persists, sub-
ject to some small modification near the peak of the Tollmien-
Schlichting wave (n =1). Figures 6-8 show that the present solutions
have the same behavior as the boundary layer solutions--they approach
the same high Reynolds number solution via their respective eigen-
functions.

-

It was not possible to carry out numerical computations with the up-
stream boundary at an arbitrarily small Reynolds number. Thus,
computations have been carried out with several upstream boundary
locations, and the results are extrapolated to smaller values,

In Fig. 10, the amplitude of several Tollmien-Schlichting waves
generated by imposing the boundary condition (14) at different loca-
tions is plotted versus Reynolds number. These curves are obtained
from the respective envelope curves, the uppermost curve being
obtained from Fig. 7. There is no numerical evidence that the ampli-
tude of the Tollmien-Schlichting waves is affected by the presence of
the sound wave subsequent to their generation at the upstream bound-
ary. This may be verified by noting that to within numerical accuracy
the curves in Fig. 10 are each a constant multiple of any other curve.
This is the expected behavior of a linear Tollmien-Schlichting wave;
the rate of decay-growth is independent of amplitude, In those cases
in which the computation did not extend to the neutral (minimum) point,
Ry =3 x 105, the curves have been extrapolated using the appropriate

-10-
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constant and are shown on the figure as dashed lines. Each of the
curves in Fig. 10 was obtained from a si.l\gle numerical computation
except for the lower curve with Ry, = 10%, This curve was obtained
with three overlapping computations with Reynolds number ranges
10% € R, $3.9x 104, 29487 S R_ S 1,15 x 10°, and 82626 € R_ <
3.2 x 103, Restarting the calc\ﬁati(m introduces a substantiﬁ
amount of noise into the computation, Because of this noise problem
and the limit in Eq. (24), no computations were attempted with R
less than 7 x 103, Increasing the number of modes in the ¢ -direc -
tion would allow Ry to be reduced further but was rejected because
of computer cost co‘:siderati(ms.

The numerical results presented are consistent with the boundary
layer model studied in Refs. 6 and 7, In the boundary layer case,

the large Reynolds number solution is approached via asymptotic,
decaying eigenfunctions, The amplitude of these eigenfunctions is
determined uniquely by the upstream boundary condition, and the
sound wave does not feed further energy into these eigenmodes at
downstream locations, In the present case, the eigenmodes of interest
are those associated with the Orr-Sommerfeld equation and are dif-
ferent from the modes of the boundary layer equations, The numerics
have been concentrated on the Tollmien-Schlichting mode. Analogous
to the boundary-layer case, the amplitude of this mode is set by the
upstream boundary condition, and no further energy is found to be fed
into it at downstream stations., In the limiting case wherein the
boundary condition is imposed arbitrarily close to the leading edge,
the eigenmodes in both cases are still uniquely dete rmined. How-
ever, these eigenmodes are asymptotic solutions valid only for s > 1,
(It is shown in the next section that the solutions to the Orr-Sommer-
feld equation only make physical sense for s >1,) In this context, the
region 0 s € 0(1) is the region in which the boundary layer and the
sound wave interact, The output of this region is a set of asymptotic
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linear solutions which are physically and mathematically independent.
Among these independent solutions are the Tollmien-Schlichting wave
and the Stokes layer solution,

The neutral (minimum) amplitude, obtained from Fig. 10 and similar
curves, is plotted in Fig, 1l as a function of the upstream boundary
location. This includes three points obtained from computations with
s <1 at Ry,. The neutral value for Ry, = 0 is the amplitude of a
Tollmien-Schlichting wave generated by a sound wave with dimension-
less frequency 56 x 10-Y at R, = 196, By extrapolation of Fig. 11,
this neutral amplitude is estizY\ated tobe 5.5#% 1,5 x 10-5, The
neutral point amplitude of the Tollmien-Schlichting wave at R, = 196
(Fig. 2) is about half the peak amplitude. Thus, the peak amglitude
of the sound-generated Tollmien-Schlichting wave is 1,0 £ 0.3 x 10-4
times the sound wave amplitude,

The frequency of the sound wave and the Tollmien-Schlichting wave in
the computations described up to this point is wu/l’-3) = 56 x 10-9,

This value was chosen to coincide with Shapiro's | l‘T experimental
frequency. There is substantial disagreement between this experi-
mental work and the present numerical computations, Based upon
Shapiro's Figure 28, the Tollmien-Schlichting wave amplitude at the
neutral point is about 0,4 times the sound wave amplitude, while the
present computations suggest a value of 10-4, There are two possible
reasons for this discrepancy, The data were obtaired on an elliptical-
nosed model with a significant pressure gradient up to Reynolds num-
bers greater than 10°, Thus, the data and the computations are not
strictly comparable. Another possibility is that the sound wave in the
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experiments was not exactly a plane -wave and thus effectively genc-
rated local disturbances,
gest that a localized disturbance can generate a larger Tollmien-
Schlichting wave than a plane wave disturbance.

The numerical results of this section sug-

A brief investigation has been made with a smaller frequency of the
disturbing sound wave.
except that the dimensionless frequency has been halved to 28 x 10-6,
This frequency is approximately the frequency at which the total

growth of the Tollmien-Schlichting wave in the unstable region is e
as shown for example by Jaffe, Okamura and Smith [10],
only two computations have been made at this frequency, the be-
havior is similar to that at the higher frequency.
amplitudes from Fig. 12 are shown in Fig. 13.

tion of these results to zero upstream Reynolds number gives a wave
amplitude of 3 x 10-5 times the sound wave amplitude., Note, how-

ever, that the results in Fig. 11 suggest that the linear extrapolation
may be a factor of two or three too high,
the fact that the plotted results are not at the peak of the Tollmien-
Schlichting wave, the linearly extrapolated result gives a peak wave
amplitude at the first neutral point of 7 x 10-5
amplitude,
decreases the peak Tollmien-Schlichting wave amplitude by 30 to 70
percent,

Figure 12 is a plot identical to Fig. 10,

Although

The neutral point
A linear extrapola-

Again, taking into account

times the sound wave
Thus, it is concluded that halving the sound wave frequency

On a sharp, flat plate, a plane sound wave interacts with the boundary
layer very near the leading edge and generates a Tollmien-Schichting
wave which can first be identified as such downstream of the s £ 0(1)
This wave propagates unaffected by the sound wave after it

Between s = 0(1) and the neutral point, the wave decays
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substantially, to about 10°% times the sound wave amplitude at the
neutral point, This is small, but it 5h(<)u\d be noted that a total
Tollmien-Schlichting wave growth of e? ~ 10 downstream of the
neutral point is frequently used to empirically correlate transition,
The results of this section also suggest that localized disturbances
may generate larger amplitude Tollmien-Schlichting waves than the
plane wave disturbance.

V. Solutions to the Urﬁr‘;Smnme rfeld Equation

In this section, the behavior of solutions to the Orr-Sommerfeld
equation in the regions s €0(1) and s > 0(1) are studied. These
solutions provide further confirmation of the difference in the phy-
sics of unsteady boundary layers in the two regions,

The Orr-Sommerfeld equation (i.e., see Schlichting [11]) is obtained
by linearizing the Navier-Stokes equations and then representing the
disturbance in the form ¢(y) exp ilotx - Wwt), The spatial eigenfunc -
tions in which wis real andatis complex are of interest here. It
should be emphasized that the variation of & with x or R_is implicitly
assumed to be negligible, since the derivative with respect to x is
taken as iMpexp i(0x - wt),

The primary spatial eigenvalue is plotted in Fig. 14 as a function of
Reynolds number. The emphasis is on low Reynolds number, and

the well-known unstable region is not computed. (The numerical
method used is described in the Appendix of Ref, 9,) Above a Reynolds
number of about 6,5 x 104, the real part of @ has a slight negative
slope corresponding to the small increase in Tollmien-Schlichting
wave length with Reynolds number. Starting from the continuous spec-
trum at R_= 62,9, Reav/U_ grows, rapidly at first, from a value of
about 0,535 x l()"". (The réﬂ;\tionship between the discrete and con-
tinuous spectrum is discussed in Refs, 9 and 12.) The imaginary part
of @Y/ Uy, is about 232 x 10~% at the continuous spectrum and decreases
by two orders of magnitude with the higher Reynolds number behavior,
as shown in Fig. 14,

The minimum wavelength associated with the maximum of Re@ in

Fig., 14 is Ry = 3,3 x 104, thus, below a Reynolds number of about

3 x 104, 1a rge changes in @ occur in one wave length, The assumption
@y = 10) leading to the Orr-Sommerfeld equation 1s violated, and a
different physical model is required in this region. Thus, the physical
entity which is approximately modeled by the Orr-Somme rfeld equa-
tion and known as a Tollmien-Schlichting wave can only exist above
some finite Reynolds number: in the present case this is about 3 x 107,

The solutions of the Orr-Sommerfeld equation are consistent with the
numerical solutions of the more complete equations in that two distinct
regions are found. For s > 0(l), where the Tollmien-Schlichting and
sound waves are independent, the Orr-Sommerfeld model is satisfac-
tory. For s < 0(l), energy is fed into the Tollmien-Schlichting wave
which appears downstream, and the Orr-Somme rfeld equation breaks
down as a valid physical model.
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Vi. ('oncluding Remarks

The major results to emerge from this study are as follows, For
nearly incompressible flow (sound wave length large compared to
Tollmien-Schlichting wave length), plane sound waves feed energy into
Tollmien-Schlichting waves only very near the leading edge; over
most of the boundary layer the two waves are totally independent. Pre-
dictions have been made of the amplitude of a Tollmien-Schlichting
wave generated by free-stream disturbances; the physical under-
standing achieved in this work will aid future studies of other types

of free-stream disturbances. The response of the boundary layer

to localized unsteady disturbances has been extensively studied.
These results show that much larger Tollmien-Schlichting waves can
be generated by local disturbances and, thus, should be more impor-
tant in the ultimate transition process. Solutions of the Orr-Sommer-
feld equation are found to change character near s = 0(1); the solutions
for s < 0(1) suggest that Tollmien-Schlichting waves do not occur in
this small region near the leading edge of the plate,
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